1 stepped pressure equilibrium code : ex00aa

Contents

L	step	pped p	ressure equilibrium code : ex00aa	1
	1.1	outline	3	1
		1.1.1	coordinate functions for small r	1
		1.1.2	logical control	1
		1.1.3	comments	1

1.1 outline

- 1. Extrapolates interface geometry to construct magnetic axis.
- 2. This routine is formally redundant, but it is useful to keep as it provides an example of how to extrapolate the interface geometry to construct a coordinate axis.

1.1.1 coordinate functions for small r

1. By exapanding f(x,y) in a Taylor series about the origin, $f = \sum f_{i,j}x^iy^j$, assuming the polar coordinate transformation $x = r\cos\theta$ and $y = r\sin\theta$, and then using repeated applications of the double angle formulae, we see that analytic functions when expressed as functions of the polar coordinates, e.g. $f(r,\theta) = \sum f_m(r)\cos\theta$, must take the form

$$f_m(r) = r^m (a_{m,0}r^0 + a_{m,1}r^2 + a_{m,2}r^4 + a_{m,3}r^6 + \dots) = \sum_{i=0}^{N-1} f_i r^{m+2i}$$
(1)

for small r, where $N \equiv iextrap$ degrees of freedom are assumed.

- 2. If the radial coordinate, s, is similar to r, then the above asymptotic form is unchanged and $f_m(s) = \sum f_i s^{m+2i}$.
- 3. In particular, the coordinate functions, R and Z, must have this functional form.
- 4. The degrees of freedom are constrained by fitting, using least squares, to $N \equiv iextrap$ surfaces,

$$e = \frac{1}{2} \sum_{i=1}^{N} \left[f_{m,n}(r_j) - F_j \right]^2, \tag{2}$$

where F_j is the harmonic at the j-th surface.

5. The linear equations to be solved are

$$\frac{\partial e}{\partial f_i} = \sum_{j=1}^{N} \left[f_{m,n}(r_j) - F_j \right] r^{m+2i} = \sum_{j=1}^{N} \sum_{k=0}^{N-1} f_k r^{m+2k} r^{m+2i} - \sum_{j=1}^{N} F_j r^{m+2i} = 0.$$
 (3)

6. This is cast in standard form, $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ where $x_k = f_k$,

$$A_{i,k} = \sum_{j=1}^{N} r_j^{m+2k} r_j^{m+2i}, \qquad b_i = \sum_{j=1}^{N} F_j r_j^{m+2i}, \tag{4}$$

and is solved using the NAG routine F04ATF.

7. The coordinate origin is simply determined, by extrapolation, by setting r = 0 in Eq.(1).

1.1.2 logical control

- 1. From Eq.(1), only modes with m=0 can contribute at the coordinate origin.
- 2. The asymptotic form is fit to the interface geometry, so $lextrap \ge 1$ and $lextrap \le Nvol$ is required.

1.1.3 comments

1. The coordinate axis is not required to coincide with the magnetic axis.

ex00aa.h last modified on 2012-07-05;